Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis of Temperatures and Stresses in Wet Friction Disks Involving Thermally Induced Changes of Contact Pressure

1998-09-14
982035
Thermal distortions of friction disks caused by frictional heating modify pressure distribution on friction surfaces. Pressure distribution, in turn, determines distribution of generated frictional heat. These interdependencies create a complex thermoelastic system that, under some conditions, may become unstable and may lead to severe pressure concentrations with very high local temperature and stress. The phenomenon is responsible for many common thermal failure modes of friction elements and is known as frictionally excited thermoelastic instability (TEI). In the paper, one of the cases of TEI is investigated theoretically and experimentally. The study involves a two-disk structure with one fiction disk and one matching steel disk that have one friction interface. An unsteady heat conduction problem and an elastic contact problem are modeled as axisymmetric ones and are solved using the finite element method.
Technical Paper

Development and Application of a Shape-Topology Optimization System Using a Homogenization Method

1994-03-01
940892
The shape and topology optimization method using a homogenization method is a powerful design tool because it can treat topological changes of a design domain. This method was originally developed in 1988 [1] and have been studied by many researchers. However, their scope of application in real vehicle design works has been limited where a design domain and boundary conditions are very complicated. The authors have developed a powerful optimization system by adopting a general purpose finite element analysis code. A method for treating vibration problems is also discussed. A new objective function corresponding to a multi-eigenvalue optimization problem is suggested. An improved optimization algorithm is then applied to solve the problem. Applications of the optimization system to design the body and the parts of a solar car are presented.
Technical Paper

An Electrorheologically Controlled Semi-Active Landing Gear

1993-04-01
931403
This study is to explore the application of electrorheology (ER) to the real-time control of damping forces that are transmitted through the nose landing gear for an F-106B aircraft. The main part of the landing gear is a strut that consists of a pneumatic spring and an ER controlled damper that is situated on the strut centerline and applies a force directly opposing the vertical displacement of the nose wheel. The damping element rotates in response to strut displacement, employing a co-axial arrangement of stator and rotor plates connected to the opposing electrodes in the control circuit. The vertical displacement is converted into rotation of the damper through a screw-nut mechanism. The ER fluid between the electrodes is thus engaged in shear along circumferential lines of action. This design results in a fast time response and a high ratio of strut forces achieved under ER- vs. zero-field control. Compact size and simplicity in fabrication are also attained.
Technical Paper

Silicon Nitride Turbocharger Rotor for High Performance Automotive Engines

1990-02-01
900656
Toyota Motor Corporation has mass-produced turbochargers with silicon nitride ceramic rotors since October, 1989. Those turbochargers have been introduced into Celica and MR-2 which are Toyota sporty-type passenger cars. The designing of ceramic rotor was carried out in order to ensure the strength and durability of the component as well as to obtain the same aerodynamic characteristics as in the metal rotor. A moment of inertia was reduced by 60% using ceramic rotor which improved turbocharger response. The ceramic rotor was joined to metal shaft by new method which compensated problems in both shrink fitting and active brazing methods. High temperature strength of silicon nitride material was improved by controlling the amount of sintering additives and sintering conditions. The ceramic injection moulding was employed to mass-produce rotors with complicated shape, applying optimun binder compositions and moulding conditions.
Technical Paper

Development of Computer Aided Engineering for Piston Design

1989-02-01
890775
Computer Aided Engineering system for automotive piston design was developed which can predict total piston performance in a short time at the planning stage of piston design. Many previous studies attempted to calculate piston performance accurately with experimental data and their main purpose was not to create a tool for piston design. The purpose of this CAE system is to provide a tool for a designer to predict total piston performance easily and rapidly without experimental data. This system has following two characteristics. Firstly, new finite element methods were developed which can predict temperature distribution without experimental data, thermal skirt expansion for a strutted piston and skirt-to-bore contact pressure under engine operating conditions. The predicted result are accurate enough to predict piston performance at the planning stage of piston design.
Technical Paper

Heavy Truck Ride

1985-04-01
850001
Designing trucks for good ride characteristics is a challenge to the engineer, given the many design constraints imposed by requirements for transport productivity and efficiency. The objective of this lecture is to explain why trucks ride as they do, and the basic mechanisms involved. The response of primary interest is the vibration to which the driver is exposed in the cab. Whole-body vibration tolerance curves give an indication of how those vibrations are perceived at the seat; however, ride studies have shown that visual and hand/foot vibrations are also important to the perception of ride in trucks. The ride environment of the truck driver is the product of the applied excitation and the response properties of the truck. The major excitation sources are road roughness, the rotating tire/wheel assemblies, the driveline, and the engine.
X